您好!欢迎光临工博士智能制造网!平台热线:021-80392549
工博士机器人网
工业机器人导轨厂家
产品:39  浏览:16281
4
您当前的位置:首页 » 新闻中心 » 目前世界工业机器人技术及关键基础状态
产品分类
新闻中心
目前世界工业机器人技术及关键基础状态
发布时间:2023-03-24        浏览次数:12        返回列表

1)机器人关键基础部件定义、分类及市场占有率;

机器人关键基础部件是指构成机器人传动系统,控制系统和人机交互系统,对机器人性能起到关键影响作用,并具有通用性和模块化的部件单元。机器人关键基础部件主要分成以下三部分:高精度机器人减速机,高性能交直流伺服电机和驱动器,高性能机器人控制器等。

目前在高精度机器人减速机方面,市场份额的75%均两家日本减速机公司垄断,分别为提供RV摆线针轮减速机的日本Nabtesco和提供高性能谐波减速机的日本Harmonic Drive.包括 ABB, FANUC, KUKA,MOTOMAN在内国际主流机器人厂商的减速机均由以上两家公司提供,与国内机器人公司选择的通用机型有所不同的是,国际主流机器人厂商均与上述两家公司签订了战略合作关系,提供的产品大部分为在通用机型基础上根据各厂商的特殊要求进行改进后的专用型号。国内在高精度摆线针轮减速机方面研究起步较晚,仅在部分院校,研究所有过相关研究。目前尚无成熟产品应用于工业机器人。近年来国内部分厂商和院校开始致力高精度摆线针轮减速机的国产化和产业化研究,如浙江恒丰泰,重庆大学机械传动***重点实验室,天津减速机厂,秦川机床厂,大连铁道***等。在谐波减速机方面,国内已有可替代产品,如北京中技克美,北京谐波传动所,但是相应产品在输入转速,扭转高度,传动精度和效率方面与日本产品还存在不小的差距,在工业机器人上的成熟应用还刚刚起步。在伺服电机和驱动方面,目前欧系机器人的驱动部分主要由伦茨,Lust,博世力士乐等公司提供,这些欧系电机及驱动部件过载能力,动态响应好,驱动器开放性强,且具有总线接口,但是价格昂贵。而日系***工业机器人关键部件主要由安川,松下,三菱等公司提供,其价格相对降低,但是动态响应能力较差,开放性较差,且大部分只具备模拟量和脉冲控制方式。国内近年来也开展了大功率交流永磁同步电机及驱动部分基础研究和产业化,如哈尔滨工业大学,北京和利时,广州数控等单位,并且具备了一点的生产能力,但是其动态性能,开放性和可靠性还需要更多的实际机器人项目应用进行验证。在机器人控制器方面,目前国外主流机器人厂商的控制器均为在通用的多轴运动控制器平台基础上进行自主研发。目前通用的多轴控制器平台主要分为以嵌入式处理器(DSP,POWER PC)为核心的运动控制卡和以工控机加实时系统为核心的软PLC系统,其代表分别是Delta Tau的PMAC卡和Beckhoff的TwinCAT系统。国内的在运动控制卡方面,固高公司已经开发出相应成熟产品,但是在机器人上的应用还相对较少。

(2)机器人关键基础部件国内外发展趋势(技术、产业);

在机器人高精度谐波减速机方面, 在其齿轮传动中采用双圆弧齿廓,可以有效改善柔轮齿根的应力状况和传动啮合质量,提高承载能力、扭转刚度和柔轮疲劳寿命,并可降低***小传动比。日本的IH齿形是基于余弦凸轮波发生器开发的双圆弧齿形,由于采用近似方法设计,应用初期出现了齿廓干涉等问题,但是到1990年代初期已经基本完善。目前,日本谐波传动系统有限公司的谐波产品有十几个类型,二十多个系列,***小传动比为30,型号中带有字母“S”的,其齿形为双圆弧齿形,产品垄断了主要国际市场。其中超短杯型号CSD和SHD,其柔轮长度仅有常规谐波传动柔轮的1/3,既增加传动刚度,又大幅度减轻了谐波减速器重量。此外,在谐波传动轻量化技术方面,采用铝等轻合金材料制造波发生器与减速器壳体等方式,减薄刚轮外缘以及改进连接结构等形式,使整机重量大幅度减轻。   相比于谐波减速机,RV减速机具有更高的高度和回转精度,目前其发展方向是如何通过对内部轴承的配置,材料和热处理工艺的改进,增加减速机的扭转刚度,***大抗弯弯矩,以及提高在频繁加减速等恶劣工况下的使用寿命。在机器人伺服电机和驱动器方面,机器人专用化的伺服电机和驱动器将成为发展趋势,即在普通通用伺服电机和驱动器的基础上,根据机器人的高速,重载,高精度等应用要求,增加驱动器和电机的瞬时过载能力,增加驱动器的动态响应能力,驱动增加相应的自定义算法接口单元,并且采用通用的高速通讯总线作为通讯接口,摒弃原先的模拟量和脉冲方式,进一步提高控制品质(如安川,松下,伦茨等主流伺服厂商以将EtherCAt总线作为下一代产品的总线标准)。同时,对于通用型的伺服驱动器删除冗余的通讯接口和功能模块,简化系统,提高系统可靠性,并进一步降低成本。在机器人控制器和控制结构发展趋势方面,不仅要具有快速的响应特性,较高的跟踪精度,而且应该有良好的通用性和扩展性。采用传统控制结构固有的缺点逐渐暴露出来,例如由于配线过多,对系统进行调试及维修比较困难;采用基于模拟信号的数据传输方式,系统的抗噪声能力很差;由于控制器的模块繁多, 模块之间的连接复杂,而且相互制约,难以实现十几个轴以上的同步协调运动控制;机器人所采用的专用的封闭式体系结构阻碍了机器人控制器的发展,满足不了现代工业柔性化发展的要求。同时目前的机器人控制智能型,交互性较差,操作安全性还有待提高。因此机器人控制器的发展趋势便现在两个方面:

①    开放性的体系结构:

***早关于开放式控制器的研究源于美国。早在 1981 年,美国国防部为了减少军备制造对日本控制系统的依赖性,开始了名为“下一代控制器(NGC,Next Generation Controller)”的计划,并成立了美国***制造科学中心(NCMS,National Center of Manufacturing Sciences),其主要目的是拟订并推进开放式体系结构的标准规范SOSAS(Specification for an Open System Architecture Standard)。其后有许多相关的研究计划在世界各国相继启动,其中比较重要,影响较大的三项研究工作分别是美国的 OMAC(Open Modular Architecture Controller),欧洲的OSACA(Open System Architecture for Controls within Automation Systems),以及日本的 OSEC(Open System Environment Controller)。这些工程的目标是开发可以控制各种基于标准的自动化硬件平台和操作环境的机器人和工业自动化系统。开发适用于机器人控制的通用软件包,其应用范围从***底层的实时伺服控制、到智能传感器处理,到高层人机交互,涉及机器人控制的各个方面。

②    总线控制方式:

在现场总线分布式结构中,各种开关量、模拟量就近转变成数字信号,所有总线设备间均采用数字信号进行通信,减小了传输误差,提高了测量和控制精度。现场总线的应用使导线和连接附件大量减少,安装、调试及维护的开销大幅度下降,并且使系统具有优异的远程监控功能和故障诊断功能,提高了系统的可靠性。现场总线还使系统硬件扩展更加方便,当控制轴数和IO点数增加时,对系统的硬件结构没有影响,便于系统的扩充和裁减。由于现场总线的协议
 

联系热线:15601785639 微信同号 联系人:李经理 联系地址:上海市宝山机器人产业园富联一路88号

技术和报价服务:星期一至星期六 8:00-22:00 工业机器人导轨厂家